samlec gEEk spEEk

SerDes CM Noise: How Much is Too Much?

Richard Mellitz and Istvan Novak Samtec, Inc.

Table of Contents

- Classifying and Organizing Common Mode (CM)
- New IEEE802.3ck CM specifications
- CM signals and histogram
- Sources of low-frequency CM noise
 - DC-DC converter switching loops
 - DC-DC converter inductors
- Where and how PDN noise can get into the SerDes path
- BER testing with and without added noise
- Mitigation options
- Summary

Classifying Common Mode (CM)

How much Common Mode Noise is too much?

Classify CM may help

High level classes of common mode issues

- Class 1: Common mode which changes the operation of serdes
- Class 2: Common mode which converts to differential mode noise and degrades SNR or BER
- Class 3: Common mode which radiates and create EMI problems
 - This is a separate topic and will not be included here

Organizing Sources of Common Mode (CM)

- Correlated to data pattern and/or transmit power
 - Mostly Class 2
 - Primary sources
 - Skew or imbalance
 - Crosstalk is correlated
- Uncorrelated CM is not correlated to the data pattern or transmit power
 - Mostly Class 1 but can affect BER
 - Primary sources: Power supply and power distribution
 - Other Asynchronous CM source examples usual have less power
 - Out of band buses
 - Transmitter CM random noise
 - EMI induction
- Mode conversion (mostly class 2)
 - Precise specifications of CM sources lead to a closed specification for mode conversion
 - In other words, tie all the specifications together

What New?

- Class 1 and Class 2 seem to apply to different frequency ranges
- IEEE802.3ck introduced a frequency classification for common mode
 - Low frequency CM is to capture Class 1 (VCM_{LF})
 - Full band CM is to capture Class 2 (VCM_{FB})
 - CM is measured as voltage derived from a cumulative distribution function (CDF)
 - AC CM RMS is no longer used
- Class 2 is linked to transmit power
 - IEEE802.3ck defines a new common mode specification: "Signal to AC common-mode noise ratio, *SCMR* (min)"
 - 20 log10 (v_{peak}/VCM_{FB})
 - v_{peak} is the peak of the pulse response fitted to a PRBS response
 - This is used for devices i.e. chips
 - $\mathrm{VCM}_{\mathrm{FB}}$ is use for Hosts and Modules
- Explanation follows

CM Basics for Class 2

- Given 2 signal waveforms, A and B
- The differential signal = A B
- The common mode signal = A + B
- For differential signaling
- A and B are complimentary
- If A == -B
 - Common mode signal is 0
- Basically, imbalance causes common mode

Coherent Sources of Common Mode (CM)

Skew

Asynchronous Sources of Common Mode (CM)

106.6 Gb/s PAM4 signaling

External Noise

Common Mode Noise has a Variety of Noise Histograms

•

Common Mode Noise Specification is Derived From a CM CDF (Not RMS)

New CM Host Spec Parameters for DAC (CR) and Optics Modules (C2M)

Paramet	Reference	Value	Units	Test Point		
Common-mode peak-to-peak voltage (max) Low-frequency, VCM _{LF} Full-band, VCM _{FB}		162.9.4.4	30 80	mV mV	TP1a	
Common-mode peak-to-peak voltage (max) Low-frequency, VCM _{LF} Full-band, VCM _{FB}		120G.5.1	32 80	mV mV	TP2	
Host	Host Compliance Board	TP1a TP2		Scope		

New CM Spec Parameters for Backplane and Chip to Chip (AUI) Devices

Parameter	Reference	Value	Units	Test Point
Low-frequency peak-to-peak AC common-mode voltage, <i>VCM</i> _{LF} (max)	162.9.4.4	30	mV	TPOv
Signal to AC common-mode noise ratio, SCMR (min)	163.9.2.6	15	dB	TPOv
Low-frequency peak-to-peak AC common-mode voltage, <i>VCM</i> _{LF} (max)	120F.3.1.1	32	mV	TPOv
Signal to AC common-mode noise ratio, SCMR (min)	120F.3.1.4	15	dB	TPOv

Host Board Mitigation Options

- Skew and channel imbalance effects higher frequency CM
 - Although it may show up as a VEC or SNDR performance degradation
- Lower frequency mitigations discussed by Istvan Novak

Typical Noise Sources

Magnetic noise from high-current power devices

- DC-DC converter power devices
- Motors (fans)

Example circuit: synchronous buck converter

Aggressor Current Loops

The major aggressor current loops in a buck converter

- 1: Within the inductor
- 2: Input side of switch
- 3: Output side of switch

DC-DC Converter Inductors

Flux in inductors with cores is the highest near the air gap

Where PDN Noise Gets into the SerDes Path

Magnetic noise couples through loops

- Trace to reference plane loop
- Via loops
- Cable shield to center-wire loop

The Real Size of Loops

- At low frequencies shield metals gradually become transparent to magnetic field
- ~10MHz for 1oz copper
 - Below ~10MHz the signal loop can expand, can pick up more noise
- ~2kHz for a typical braided coax cable
 - Below ~2kHz the coax shield becomes transparent, can pick up more noise
- External reference connection can create big ground loops, diminishing shielding

"How the Braid Impedance of Instrumentation Cables Impact PI and SI Measurements," DesignCon 2019

Impact on SerDes Signals

1,014

13

1

. 0.0

-5.1

-1.1

Mitigation Options

Increase the distance (increase d)

Make the loops smaller (reduce r1 and r2)

Adjust orientation (make loops orthogonal)

Apply shielding either on aggressor or on victim

Summary

New IEEE 802.3ck CM specifications

- Separate high and low frequency CM
- Common mode voltages become statistical bases not RMS based
- A device's (chip's) high frequency CM is linked to transmitter signal strength
 - Because high frequency common mode is expected to degrade with loss as the signal degrades with loss
- Switching regulator can be low-frequency noise source
- Mitigate by increased spacing, and/or reduced loop size, and/or shielding

gEEk[®] spEEk

samtec.com/geekspeek

 \sim

geekspeek@samtec.com

SIG@samtec.com