

geek® speek

Impacts of Solder Reflow on High Bandwidth RF Connectors

Michael Griesi and Chris Shelly

Everything's Great Until You Apply Solder!

REAL

Everything's Great Until You Apply Solder!

Getting from this

CURRENT & NEXT GEN CONNECTIVITY BOARD-TO-BOARD | SILICON-TO-SILICON

PRECISION RF | Push-on Connectors

Focus on SMPM Surface Mount

SMPM-SM INITIAL DESIGN

Initial Trials

Initial Design

Design Targets:

- Desired 40 GHz Bandwidth
- Simulation showed <25 GHz

"Tombstoning"

Probable Causes:

- Thick Gold Plating
- Insulator TCE (Thermal Expansion)
- Center contact barb mechanical stress

Initial Trials

SMPM-SM-1 NEW DESIGN

New Design Looked Much Better Visually

New Design

Notable Changes:

- Thinner gold plating
- Higher Temp Insulators
- Swept Contact

No More "Tombstoning" Notable Improvements:

• Solder "Looks" Good

New Design VSWR Showed Variation

New Design VSWR Showed Potential

amtec Confidential

Variation with Impedance

THE HUNT FOR VARIATION

Visible External Solder Wicking

Some of the samples had significant wicking up the body and around the dielectric

While the external solder would not have impacted the internal impedance... Wicking was significant enough to suggest solder might also be wicking under the connector which would not be visible

There was also excessive solder on the connector pin

Sure enough, solder was found pooling along the inner edge of the connector at the pad

A solder pool was added to the simulation model to assess the potential impact

Impedance Variation from Solder Pooling

Impedance Variation from Solder Pooling

Samtec Confidential

Hidden Solder Wicking Up the Connector Pin

Solder was found wicking up the contact, under the insulator, with significant variation across samples

Solder wicking added to the simulation model and varied to assess the potential impact

Impedance Variation from Solder Wicking

Simulation Model Correlation

New Design VSWR Showed Variation

MINIMIZING VARIATION

Mitigating Solder Pooling

Added Chamfer to Connector Edge to Minimize Solder Pooling

Connector Chamfer Minimized Solder Pooling!

Chamfer provided a space for the solder without impacting SI

Controlling Solder Wicking

Samtec Confidentia

Reflow Thermal Profile

AGGRESSIVE THERMAL PROFILE

Peak Connector Temperature: 254°C | Reflow Time: 82s

MODERATE THERMAL PROFILE

Peak Connector Temperature: 244°C | Reflow Time: 62s

Reflow Process Adjustments

Process Parameter Adjustments							
Solder Paste:	Water-Soluble		No-Clean				
Reflow Environment:	Nitrogen		Air				
Stencil Thickness:	.005″		.004"				
Reflow Profile:	Aggressive		Moderate				

Stencil Aperture Modifications:

"A" dimension (offset between edge of pad and stencil aperture) was increased in iterations to prevent solder from wicking/migrating into critical regions for SI.

Improved Design & Process Reduced Zo Variation

Samtec Confidential

Improved Design & Process Reduced VSWR Variation gEEk spEEk

Improved Design & Process Increased BW Potential

SMPM-SM-1

ELECTRICAL DATA

www.samtec.com/products/smpm-sm

Impedance	50 Ohm		
Frequency Range	DC to 55 GHz		
VSWR ¹	DC to 26.5 GHz: 1.25:1 Max 26.5 GHz to 40 GHz: 1.45:1 Max 40 GHz to 55 GHz: 2:1 Max		
Insertion Loss ²	0.04 √F (GHz) dB Max		
Insulation Resistance	5000 MOhm Min		
Voltage Rating (Sea Level) ³	170 Vrms Max		
DWV ³	325 Vrms Min (sea level)		

¹VSWR per connector when tested on Samtec multi-layer test PCB ²Single connector insertion loss only ³May be further limited by PCB design

Samtec Confidentia

PCB Reference Design

Layer	LaverName	Material	Thickness		
Number			mils	mm 🚄	PCB STACK UP
	TOP_SM	PSR-4000-BN	0.71	0.018	
1	ТОР	PLATED COPPER (0_5oz)	2.09	0.053	
	CORE01	I-TERA MT40 (2x1086) (67%) C	7.01	0.178	
2	P02	COPPER (0_5oz) VLP2	0.59	0.015	
	DIEL02	I-TERA MT40 (1x1080) (70%) PP	3.43	0.087	
	DIEL03	I-TERA MT40 (1x1080) (70%) PP	3.43	0.087	
	CORE04	I-TERA MT40 (2x1086) (67%) C	7.01	0.178	
	DIEL05	I-TERA MT40 (1x1080) (70%) PP	3.43	0.087	
	DIEL06	I-TERA MT40 (1x1080) (70%) PP	3.43	0.087	
3	P03	COPPER (0_5oz) VLP2	0.59	0.015	
	CORE07	I-TERA MT40 (2x1086) (67%) C	7.01	0.178	
4	BOTTOM	PLATED COPPER (0_5oz)	2.09	0.053	
	BOTTOM_SM	PSR-4000-BN	0.71	0.018	
Total thickness over solder mask and plated copper 41.53 1.054					
OLDERMAS	K LA	YER 1 LAYER 2		LAYE	ER 3

FOOTPRINT IMAGE

RELATED WORK

Tools & Techniques

Mechanical Cross Section

Mechanical Removal: Solder Test Boards

Modeling Solder Reflow

1. Start with the connector CAD, PCB Layout and apply solder per the stencil

We are actively exploring workflows, developing modeling capabilities and refining material characteristics in order to develop improved methods of predicting solder reflow to minimize design iterations. 2. Apply different conditions that impact solder wetting and wicking

Note: solder plots are only visualizing the surface but solder is solid in the simulation between the surfaces

3. Simulations predicted pooling and wicking as observed physically

Other Connectors

SMPM Edge Mount

Samtec Confidentia

Other Connectors

SMPM Through-hole

TAKEAWAYS

TAKEAWAYS

1) Solder reflow plays an important role in the success and performance of high bandwidth RF connectors

2) To better control solder reflow, changes can be made to the connector, the PCB, and the process

3) The connector, PCB, and process were all improved to develop Samtec's high performance <u>SMPM-XX-P-XX-ST-SM-1</u>

4) The challenges of solder reflow and the impact it has on performance extends to all high bandwidth RF connectors

PRECISION RF

Visit: http://www.samtec.com/precisionrf Contact: rfgroup@samtec.com IPG Contact: ipg@samtec.com

geek speek

samtec.com/geekspeek

geekspeek@samtec.com

