

geek speek

Dual Reverberation Cavities for I/O Connector EMI Performance Gary Biddle

Table of Contents

- **1. Introduction EMI / EMC**
- 2. Large Reverberation Chamber [LRC]
- 3. Dual Reverberation Chambers [DRC]
- 4. Useful Measurement Examples
- 5. Screening Effectiveness Definition [ScrEff]
- 6. IO Connector Port Example

Introduction

Real World

EMI is ElectroMagnetic Interference

EMI is **electromagnetic energy** that emanates from electrical source/device by conducted or radiated emissions into surrounding environment. If emissions interact and disables other devices, the interference is an intolerable disturbance.

The Solution is EMC

EMC is electromagnetic compatibility that mandates any emission must not interfere at all with any other device in the environment. This is achieved two ways:
[1] Emission Levels ->Limit radiated energy from devices.
[2] Immunity levels ->Mitigation requirements to limit external energy from penetrating device shielding.

EMC Test Standards

The Test Standards are a compendium of domestic and international measurement practices across a wide range of applications voted into law by experts in the industry and enforced by governments.

EMC Test Methods ... [DC to 40 GHz]

EMC Testing -> Two Branches

Radiated Emissions

Product Compliance

- Domestic usage

 Device does not interfere TV
 Phones, radios, computer, etc work in same room
- Industrial environment

 Integrity of data centers
 Manufacturing equipment

Susceptibility Immunity

Product Protection

- Important in applications where an interference would be life threatening:

 Hospital
 Air travel
- Hostile Environments:

 Warfare
 Industrial settings

OATS "Benchmark Method"

Semi - Anechoic Chamber

LRC

Why LRC ???

- Parallel attributes to an OATS setup
- Well established basis of mode stirred theory

□ Myron L. Crawford NBSIR 81-1638

- □ IEC 61000-4-21 Reverberation Chamber Test Methods
- Isolation from ambient background noise
- Large test frequency range
- Fast and accurate
- Removes the spatial dependence of the DUT [repeatability]
- Ultimate goal is to correlate to an OATS measurement.

LRC Layout

Samtec Reverberation Chamber

- CCA Box [Test Vehicle to Compliance Site]
- Antennae
- Mode Stirrer

CCA Test Box Vehicle

View Inside Box

Attributes

- 7 " Cube Space
- Portable [4 bolts]
- Utilize Absorber
- Utilize Elastomer
 Cord
- Allow TD or FD DOEs
- Goal > +100 dB Isolation

Video ... Rotation 2 axes

Simultaneous rotation about 2 axes

Why DRC ???

- Evaluate Power Transfer thru DUTs [FOCUS]
 - -- aperture, connector shell, IO port assembly
 - -- material sheet, screening, gasket
- Uses LRC theory, fast and accurate, isolation, large freq span, etc....
- Benchtop setup... smaller size... therefore better suited for simulation to support test development.
- Very difficult to do with OATS or LRC setups.

Design Options for Dual Cavities

Resonator Cavity Shape

Design Options for Dual Cavities

Spherical Cavity Resonator Setup

4 port Measurement

Measurement Setup

Samtec Confidential

Simulation Setup

Power Summing Absorbing Boundary for TRP

Simulation space provides visual details.

HFSS illuminates DUT with Plane Waves

Incident Plane Wave Excitation

Power Sum on Absorbing Boundary

Simulated Power Transfer thru Aperture ... TRP

- Requires two chambers:
 - Excitation
 - □ Receiving
- DUT is placed between chambers
- Ratio of energy density between chambers is the power transfer thru DUT.
- HFSS computes TRP by summing on boundary.

Free Space Animation of Helix Antenna at OATS

EMA3D Simulation Support

Field Pattern of Helix Antenna Inside Resonator Cavity

0.000e+000 -2.381e+000 -4.762e+000 -7.143e+000 -9.524e+000 -1.190e+001 -1.429e+001 -1.667e+001 -1.905e+001 -2.143e+001 -2.381e+001 -2.619e+001 -2.857 e+001 -3.095e+001 -3.333e+001 -3.571e+001 -3.810e+001 -4.048e+001 -4.286e+001 -4.524e+001 -4.762e+001 -5.000e+001

Ey on YOZ Plane

EMA3D Simulation Support

Dual Reverberation Chambers

Accessibility to change DUTs

Correlation: Driven Aperture Standard

Simulation vs. Measurement:

- Ref Planes Identical
- RL, IL, Att, TRP
- Determine Calibration Factors

50 ohm Port

DRC Calibration/Correlation Plate

Useful Measurement Examples

#1 DRC Apertures / Noise Floor Plate

#2 Rectangular Waveguide Section

Waveguide Section Example

Waveguide Section

#3 Ventilation Hole Pattern vs. EMI

Progressively increasing ventilation hole DIAs while measuring EMI

Initial Hole Size is 30 mil DIA

Final Hole Size is 80 mil DIA w Slits

Power transfer for increasing Hole DIAs

#4 Shield Cover for PCB Component

Snap-On-Lid

Prototype Frame Low Height

Prototype Frame High Height

Screening Effectiveness

Shielding Effectiveness [SE] definition is widely used across many test specifications:

```
SE = 10 \log (P1/P2)
```

Where the Reference Power [P1] is commonly defined in different ways:

- Input power a DUT is energized with
- TRP from an Unshielded Connector Cable Assembly [CCA]
- Power level measured by Chamber Reference Antenna
- Coupling Power between Parallel Plates

And [P2] is the DUT emissions.

For DRC measurements, trying to avoid adding an additional type of Reference Power [P1] into this mix.

ScrEff Definition

Screening Effectiveness [ScrEff] is defined as:

```
ScrEff = 10 log (P1/P2)
```

Where:

- **P1 = Power Transfer thru Test Aperture**
- **P2 = Power Transfer thru DUT in the Aperture**

Screening Effectiveness [ScrEff] provides the relative reduction of power transfer [aka .. power flow] thru a DUT.

ScrEff = 10 log (P1/P2)

ScrEff/10 = log (P1/P2)

(ScrEff/10) 10 = (P1/P2) => [relative reduction]

ScrEff = 10 dB	equates to	.1 of P1 power transfers thru DUT ->	10%
ScrEff = 20 dB	equates to	.01 of P1 power transfers thru DUT ->	1%
ScrEff = 30 dB	equates to	.001 of P1 power transfers thru DUT ->	.1%

etc....

IO Connector Port Example

Double Density Flyover QSFP Cable System Cage

Model for Bezel Spring Analysis

QSFPC-DD Cage

QSFPC-D8 Cage

Spring Finger Comparison

Single Row [DD]

Double Row [D8]

Single Row vs. Dual Row

Pathway #1 for Power Transfer

Pathway #1 is internal to cage body walls :

Pathway #2 for Power Transfer

Pathway #2 is external to cage body walls:

Final ScrEff Result

ScrEff is determined by the sum of Pathway #1 + Pathway #2 power transfers.

Power Transfer [Single vs. Dual]

samtec

Screening Effectiveness [Single vs. Dual]

HFSS Simulation TRP

Prototype Correlation for TRP

- IO product QSFPC has optimized shielding.
- DRC useful for measuring power transfer for I/O panels.
- DRC supports testing / simulation for product development.
- DRC has potential for rigorous calibration.
- Screening Effectiveness is well defined measurement.

Thank You !!!

geek speek

samtec.com/geekspeek

geekspeek@samtec.com

