

geek® speek

Key Development Steps of 112 Gbps PAM4 Test Platforms

Jean-Remy Bonnefoy

Introduction and Outline

- With great data rate comes great responsibility
 - At 112G-PAM4 optimization for loss, reflections, crosstalk and power integrity needs extra care
- Case study of an evaluation board that uses 112G-PAM4 silicon and connector
 - Optimizing a 112G test channel
 - Power delivery network design process
 - A look at the channel performance
 - Lessons learned

Optimizing a 112G-PAM4 Test Channel

- The Channel:
 - Top mounted BGA
 - Bottom mounted connector
 - Thermal/Mechanical constraint
 - 6" low loss coax cables
- 3 dB total IL at 28 GHz for Tx lanes
- Use affordable, readily available material

PCB Design

• Stack-up:

- I-Tera MT40
- Core out construction
- Dielectric with 1067 weave
- Impedance:
 - 90 Ohm package / 50 Ohm single ended coax cables
 - 92 Ohm BGA escape and open routing
- Routing:
 - Two routing layers (RX, TX)
 - Short TX traces, 11 mm
 - Board rotation to mitigate periodic fiber weave effects

	Calc			
Layer	Thickness	Primary Stack	Description	Dk / Df
Layer - 1	0.0010 0.0026	11	Taiyo 4000-MP 1/2oz Mix (Std Pit)	3.60 / 0.0190
	0.0050	0.0050	I-Tera MT40	3.17 / 0.0023
Layer - 2	0.0006	(2-1007)	1/2oz Sig	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 3	0.0006		1/2oz P/G	
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Layer - 4	0.0006		1/2oz Sig	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 5	0.0006		1/2oz P/G	
	0.0140	0.0140	I-Tera MT40	3.56 / 0.0033
Layer - 6	0.0006		1/2oz P/G	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 7	0.0006		1/2oz Sig	
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Layer - 8	0.0006		1/2oz P/G	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 9	0.0006		1/2oz Sig	
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Laver - 10	0.0026		1/2oz Mix (Std Pit)	

Via Breakout Optimization

• Topology:

- Top-mounted BGA / Bottom-mounted connector
- CDD and through vias, inherent minimal stubs
- Optimized via design:
 - Auxiliary ground vias
 - Teardrops
 - Offset ground relief on lower reference plane

Connector

Connector via

CDD via

Thru via

Initial Simulations and Measurements

- Concatenated 4-port channel:
 - Extracted package layout
 - Simulated GL102 dielectrics
 - Vias, PCB and cabling simulated separately
- Measurements:
 - Bare-die BGA package
- Miscorrelation:
 - Under-modeled impedance discontinuities
 - Missing resonances in the IL

Examining Root Cause

- Deep dive simulation review:
 - Package vias pads and diameters
 - Package copper roughness
 - PCB thru vias tolerance
 - Connector model initially truncated
 - Improved co-meshed simulation

Combined co-meshed simulation model

Solder Ball Model Sweep

• Reflowed ball size (width) sweep

• Ball shape (height) sweep

More predictive of TDR discontinuities

Reflowed Ball Size Approximation

- Pre-reflowed size measurements
- Wide range of reflowed ball shapes
- CT-scan and feeler gauge

Pre-reflow solder ball

Real solder ball shapes

CT-scan of soldered BGA

Improved Correlation

- Co-meshed simulation:
 - Trace impedance updates
 - Improved reflowed solder ball model

• Correlation:

- Still missing some IL resonance at higher frequencies
 - Ball model approximation
 - Die probe calibration impact
 - Small uncertainty in VNA accuracy

Power Delivery

• Goals:

- Power the board from single 5V supply
- Provide option to feed each rail from its own supply
- Neglect impact of noise on the board PDN
- Target impedance = 2 mOhms

Net	Net DC voltage		Max	Allowed	Target
	[V]	[A]	transient	deviation	impedance
			current [A]	[mV]	[mOhm]
P_VDD	0.75	3	1.5	3	2
PA_VDDL	0.75	2	1	2	2
PA_VDDH	1.2	2	1	2	2
P_VDDH	1.8	1	0.5	1	2

• Architecture:

Relatively low current = cascaded linear
regulators and jumper selectable supply
options.

Capacitor Selection

Four parallel capacitor banks	C1	tol. [%]	C2	tol. [%]	C3	tol. [%]	C4	tol. [%]	
Capacitance C [F]:	4.70E-04	20	1.00E-04	20	2.20E-05	20	1.00E-05	20	Fmin[Hz]
		-20		-20		-20		-20	1.E+03
Ser. resistance ESR [ohms]:	0.015	0	0.9	0	0.004	20	0.005	20	Fmax[Hz]
		-50		-50		-20		-20	1.E+09
Ser. inductance ESL [H]:	3.00E-09	20	5.00E-09	20	1.00E-09	20	1.00E-09	20	
		-20		-20		-20		-20	Total:
Number of parts in bank	10	110 Calify - 2	1	6.7.6.7.6	3		36	and Construction	50

• Big-V impedance profile:

- 10 uF 0402 ceramic opposite the BGA
 - Single value
 - Directly on Power/GND vias
- 470 uF polymer bulk capacitors help regulator maintain low impedance
- 22 uF ceramic at the output of the regulators for stability

Lumped impedance profile P_VDD (Ohm)

Plane Optimization

• Optimize DC-drop <1% nominal

- 1 oz copper power layers
- Hybrid solder iterations to optimize shape size

- Minimize rail-to-rail crosstalk
 - Avoid overlap between power planes of different nets.
 - Especially analog vs digital nets

Net	DC voltage	Max current	Max DC	Max rel. DC
	[V]	[A]	drop [mV]	drop [%]
P_VDD	0.75	3	5.1	0.68
PA_VDDL	0.75	2	4.3	0.57
PA_VDDH	1.2	2	8.1	0.675
P_VDDH	1.8	1	0.53	0.03

PDN Analysis

• Spice simulations

- Vendor supplied models and simulator
- Simulated startup behavior to ensure stability of cascaded regulators
- Simulated output impedance with lumped external components

PDN Analysis

AC impedance simulations

- Dedicated test points and chip's pin field location
- Mimicking two-port shunt-through measurement
- Two scenarios:
 - Voltage regulator output open (right)
 - Series R-L element mimicking regulator output impedance (left)
 - Equivalent inductance intentionally high to see bulk capacitance impedance

TP33: P_Vddh red TP34: P_Vdd yellow TP35: Pa_Mss_Vddh purple TP36: Pa_Mss_Vddl dark yellow GND: green

Measurements and Correlation

• Measurements:

- VNA with common-mode toroid suppresses cable-braid ground-loop error
- Custom made semirigid probes
- 100 Hz 10 MHz measurements with and without power applied

• Miscorrelation:

- DC resistance above 10 mOhm
 - Selection jumpers simulated with zero resistance
 - Not shown jumpers were shorted with solder
- Impedance peak at 12 kHz around 100 mOhm with minimum load current

Root Cause Analysis

Impedance magnitude [Ohm]

1.00E+00 1.00E-01 Aeasured with different load currents 1.00E-02 1.00E-03 Simulated with 1A load current 1.00E+00 1.00E-04 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 Frequency [Hz] 1.00E-01 1.00E-02 1.00E-03 1.00E-04 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 Frequency [Hz] - '1 0A' - '1 5A' - '2.0A' ---- '3.0A' 0 5 A'

- Investigation:
- Disabled upstream regulator
- Added lossy bulk capacitors
- Altered the regulator's feedback circuit
- Measured evaluation board of regulator
- Improvements:
- Updated model's closed loop bandwidth
- BOM change, higher ESR bulk capacitor

Channel Performance

- Powered with onboard regulators
- PRBS31 test signals
- Sampling scope with de-embedding tool
- Clean transmitter PAM4 eye diagram at 106.25Gbps

TX Eye Diagram measured with N1060A Precision Waveform Analyzer module

Real Life Channel

Cable backplane test channel

Cascaded channel IL (dB)

BER Results

- Good margins at the receiver
- BER ~1e-8 pre-FEC

- Successful design enabling 112G-PAM4 silicon evaluation
 - Low insertion loss TX and RX design
 - Clean power distribution
 - Good channel performance
- Important learnings
 - Under-modeled loss contribution of the package
 - BGA package attach cannot be neglected for high data rates
 - Testing power converters prior to design

geek speek

samtec.com/geekspeek

geekspeek@samtec.com

