

geek® speek

Effective Return Loss (ERL): What is ERL and How is it Computed? | Presenter: Richard Mellitz

samjec gEEk spEEk

TABLE OF CONTENTS

- What is ERL?
- Return Loss and Performance
- Examples of Various Return Losses
- Step time domain reflectometry (TDR) and Pulse TDR (PTDR)
- Computing ERL
- Discussion of ERL Parameters
- Advanced Topics Accounting for package loss and DFE (Decision Feedback Equalization)
- Summary

EFFECTIVE RETURN LOSS (ERL)

- ERL is a figure of merit representing measured return loss (RL)
 - ERL is a scalar
 - ERL is the amount of digital signal returned which is statistically reduced to an effective value at the test point.
 - ERL may address both compensable and un-compensable ISI.
- Return loss (RL) is the self-port s-parameter (s_{ii}) versus frequency represented as loss.

- RL is vector

- Return loss is a measurement of reflections
- Bumps on road can be a simple analogy for reflections on a transmission path

SOME REFLECTIONS ARE ALREADY INCLUDED

- Use 3 Boards with separable interfaces as an example
- Reflections are included for transmission performance between "a" and "b"
- Next look at Board 3 as an interchangeable part

HOW MUCH MORE REFLECTION IS TOLERABLE?

- **Question:** How much more reflection can Board 3 have and still have acceptable signal transmission between "a" and "b"?
- The challenge is to quantify the reflection in a meaningful way

REMINDER

• ERL and RL are only a small part of the story

- A Hummer is different from a Ferrari
- Context matters
- How the interface behaves to a data stream is context for ERL
- However, reducing reflections is most always desirable

HISTORICALLY, RL vs. FREQUENCY WAS THE METRIC

- Limit lines RL vs frequency were used to indicate pass fail

 Called masks
- Setting these limit lines can be a challenge
 - There does not appear to be a clear way to relate limits lines to successful signal transmission.
 - Except we know that if there are no reflection, that is good.
- An example is used to illustrate

THE SIMPLIFIED CHANNEL USED IN THE EXPERIMENT HAS ABOUT 12. 5 DB LOSS AT 26.6

- 3 separable Boards (1, 2, 3)
- Board 1 and Board 3 are respectively a transmitter (Tx) board and receiver (Rx) board with circuitry
- Board 2 is similar to low loss cabling
- This channel is somewhat reflection dominated
 - It will serve to illustrate the impact of reflection metrics

CONSIDER 100 GBPS (53.126 GBAUD) PAM-4 SIGNALING

Evaluation includes three PCB variations for Board 3

PCB 1, PCB 2, & PCB 3

The end-to-end insertion loss for all 3 PCB variations for Board 3 are about the same

~ 12.5 dB total loss at 26.6 GHz

- No Jitter or noise
- The transmitter has 1 precursor FFE tap
 - 0 to -0.1, 0.02 steps
 - Tx edge rate at source 6 ps
- The receiver has a CTLE - 0 dB to -15 dB, 1 dB steps

WHICH HAS BETTER PERFORMANCE?

 Channel operating margin (COM) and minimum detector error ratio (DER) used to compare the three designs

CHANNEL OPERATING MARGIN (COM) WAS USED TO COMPARE THE THREE DESIGNS

	PCB 1	PCB 2	PCB 3
C1	110 fF	130 fF	120 fF
C2	60 fF	50 fF	95 fF
R1	50 Ω	37 Ω	65 Ω
Len	28 mm	30 mm	28 mm

COM	COM
4.4 dB	4.43 dB
DER= 2e-6	DER= 2.1e-6

COM 2.3 dB DER= 3.8e-4

No Big Surprise

JUST WHEN YOU THINK YOU HAVE IT FIGURED OUT...

- Modify PCB 3 a little
 - Change C1 from 130 fF to 140 fF
 - Change C2 for 95 fF to 100 fF
 - Change R1 from 65 Ω to 35 Ω
- PCB 3 Performance improves
- Old PCB 3 COM was 2.3 dB
- Modified PCB 3 COM is 3.3 dB
- More on latter ERL later, but ERL improves
 - Old PCB 3ERL was 5.6 dB
 - New PCB 3 ERL is 6.6 dB
- It's harder to gain insight from these RL plots
- TDR may hint how to account for reflections

REVIEW OF TIME DOMAIN REFLECTOMETRY (TDR)

- TDR is time domain reflectometry, using a step as a source
- The voltage measured at the sample head, v(t), is converted to a waveform of impedance verse time
- We normally look for impedance discontinuities
- Why not quantify the discontinuities as a data signal would encounter
 - That is basis of using pulse instead of a step

INTRODUCTION TO PULSE TIME DOMAIN REFLECTOMETRY (PTDR)

- PTDR is time domain reflectometry using a pulse as a source
- PTDR units are the amount of reflection at a point in time
- The PTDR waveform is observed at the test point after a filter

FIRST LOOK: TIME DOMAIN REFLECTOMETRY (TDR)

- Traditionally, TDR has been used to diagnose discontinuities
- We could rationalize that PCB 3 is worse
- How can we turn this inspection of TDR into a meaningful number?
- Let's start with the context
- In prior presentations we showed how for a given data rate the received signal can be decomposed into a collections of pulses

PULSE TIME DOMAIN REFLECTOMETRY (PTDR)

- For TDR we convert reflected voltage to impedance
- For PTDR we report the <u>amount</u> of pulse that is reflected
- PTDR provides more insight into the amount of signal reflected at each point in time
- PTDR captures changes in impedance
 - Sort of like a derivative
- One thing to note is not all of the reflected signal makes it back to the receiver.
 - It needs to be re-reflected by the other board
 - So the board reflections at each interface are tied together

PDTR is used to determine a single value, ERL representing reflections looking into the Board 3 test point

PTDR IS OBTAINED FROM A MEASURED RL S-PARAMETER ... DETAILS ...

PTDR may be computed using an iFFT of the filtered return loss

$$PTDR(t) = \int_{-\infty}^{\infty} X(f)H_t(f)S_{ii}(f)Hr(f)e^{j2\pi ft}dt$$

- H_t(f) is the edge rate filter
- H_r(f) is a receiver filter
- S_{ii}(f) is the measured return loss
- X(f) is a function representing a pulse

ADDING UP ALL THE REFLECTION IN PTDR?

That seems pessimistic

Look at context again

- Pulses only occur, depending on data, at well-defined intervals which is the inverse of the baud rate (1/f_b)
 - Commonly called the unit interval (UI)
- This results in a set of reflection corresponding to samples in the PTDR

 At UI sample intervals.

COMPUTING ERL FROM PTDR

- ERL is a statistical compilation of
 - The red dots at the right
 - They are a selection of "n" reflections sampled 1 UI apart
- ERL really uses R_{eff}(t)

 $R_{eff}(t) = G_{loss}(t) G_{rr}(t) PTDR(t)$

- For this example $G_{loss}(t) = G_{rr}(t) = 1$
- We will do more with this later when we talk about gating

A STATISTICAL COMPILATION OF REFLECTIONS IS USED TO DETERMINE ERL

For the assumption of random data based on coded ¹symbols:

- The goal is to determine the reflection sample set with the largest variance distribution
- Using that sample set we determine the cumulative reflection value with a probability associated with the specified BER

Convolve with random data to create a PDF for each n sample

CDF for each sample "n" sample set

¹Symbols for PAM-4 = [-1 -1/3 1/3 1]

COM MATLAB[®] CODE MAY BE USED TO COMMUTE ERL

* PARAMETERS USE TO COMPUTE ERL (More Details Later On)

Parameter	Symbol	Units	Default	COM Code Keyword
Signaling rate	f_b	GBd	-	f_b
20%/80% Gaussian transition time associated with a pulse	T _r	ns	0.01 ns	TR_TDR
Receiver bandwidth for 4 th order Butterworth Filter	f_r	f _b	0.75	f_r
Number of signal levels	L	—	-	L
Length of the reflection signal	Ν	UI	-	Ν
Number of samples per unit interval	М	—	32	Μ
Equalizer length associated with reflection signal	N _{bx}	UI	-	N_bx
Incremental available signal loss factor	$\boldsymbol{\theta}_{x}$	GHz	0	beta_x
Permitted reflection for an external connection at the test point	ρ _x	—	0.618	rho_x
Target detector error ratio	DER ₀	—	-	DER_0
Fixture gating delay time	T _{fx}	sec.	0	fixture delay time

* IEEE Std 802.3cd[™]-2018 Annex 93A.5

(Amendment to IEEE Std 802.3[™]-2018 as amended by IEEE Std 802.3cb[™]-2018 and IEEE Std 802.3bt[™]-2018)

PULSE RESPONSE PARAMETERS APPLIED TO ACQUIRE A PTDR

Parameter	Symbol	Units	COM Code Keyword
Signaling rate	f_b	GBd	f_b
20% to 80% Gaussian transition time associated with a pulse	T _r	Ns	TR_TDR
Receiver bandwidth for 4 th order Butterworth Filter	f_r	f _b	f_r

COM Code Keyword	Units	Symbol	Description				
Fixture delay time	s	T _{fx}	Fixture gating delay time is twice the propagation delay in ns associated with the test fixture, obtained by measurement or inspection Test fixture (delay = $T_{fx}/2$) Device Under Test (DUT)				
TDR_W_TXPKG	Logical	-	1 cascades one selected package in the COM configuration file to the transmit end of the specified channel 0 no cascade action (default)				
COM Tx Package		(Channel Under Test (s4p) point				

WINDOW FOR iFFT OF RL

COM Code Keyword	Units	Symbol	Description					
Tukey_Window	Logical	-	1 applies a Tukey filter to the PTRD increasing computational stability A Tukey window is also known as a cosine-tapered window 0 no filter is apply (default)					
	1-		cosine 0					
			$f_b * f_r = f_b$					

ADDITIONAL ERL COM CONTROL PARAMETERS

COM Code Keyword	Units	Symbol	Description
TDR	logical	-	0 Disables TDR 1 Enables TDR (required for ERL)
ERL	logical	-	0 Disables ERL computation 1 Enables ERL computation, requires TDR enabled
ERL_ONLY	logical	-	0 Enables COM computation (default) 1 Disables COM computation for faster runs

N IS NUMBER OF UI GATING TDR AND PTDR

$T_{\rm fx}$ is number of seconds which gates tdr and ptdr for fixture adjustments

DETERMINING T_{fx}

- T_{fx} may be found by:
 - Acquiring a FIR (finite impulse response) from the fixture s-parameter
 - Double the time at which the peak of the FIR occurs

ERL FINE TUNING ACHIEVED BY ADJUSTING N AND T_{fx}

- The red curves at the right are with a reference via which may be modeled as a shunt 120 fF
- The blue curves at the right are the same via with 20 fF of reduce capacitance
 - I.e. modeled as 100 fF
- A 20 fF change in via impedance is quantifiable

samiec gEEk spEEk

ERL ADVANCED TOPICS

- Package Loss Compensation
- DFE adjustments (compensable ISI)
- Both use the parameter N_{bx} which is set equal to the total number of DFE taps, N_b
- The thinking is N_{bx} is linked to the highest expected package loss

REVIEW OF ADVANCED FEATURE PARAMETERS

Parameter	Symbol	Units	Default	COM Code Keyword
Equalizer length associated with reflection signal	N _{bx}	UI	DFE n	N_bx
Incremental available signal loss factor	$m{ extsf{ heta}}_x$	GHz	0	beta_x
Permitted reflection for an external connection at the test point	ρ _x	_	0.618	rho_x

PACKAGE LOSS COMPENSATION

- Short packages have more reflection but less loss
- For systems with maximum die to die loss, the package loss tends to be much greater than package reflections
 - Remember that package reflections are also already included end to end loss
- Goal: Adjust the effective return loss to compensate
- Originally G_{loss}, fitted time gating/weighting function, was applied to PTDR

$$G_{loss} = 10^{\frac{\beta_x \left(t - T_{fx} - T_b (N_b + 1)\right)}{20}}$$

• However since G_{rr} and G_{loss} have similar gating properties and it was decided to only use G_{rr} for this purpose – i.e. set β_x is zero which sets G_{loss} to 1

samjec gEEk spEEk

DFE ADJUSTMENTS (COMPENSABLE ISI)

- All reflections are not equal
- Goal: Adjust the effective return loss to accommodate a DFE which may remove the effects of some reflections at the receiver
- Solution: Apply fitted time gating/weighting function $\rm G_{\rm ff}$ to the PTDR waveform

$$G_{rr} = \rho_{\chi} (1 + \rho_{\chi}) e^{-\frac{\left(\frac{t - T_{f\chi}}{UI} - (N_b + 1)\right)^2}{(N_b + 1)^2}}$$

- The amount of allowable re-reflection is captured by ρ_{x}
- As mentioned earlier this can be used to account for loss too

G_{rr} CAVEATS

- Some reflections nullified at the receiver but
 - The actual reflection waves are not removed from the channel and are free to reverberation with other discontinuities
- The parameter N_{bx} is used to adjust the PTDR waveform

 It is usually the same as the number of DFE taps
- $N_{\rm bx}$ is not appropriate for all topologies and test point
- The latest standards sets the value of ρ_{x} to 0.618
- Locking down ρ_{x} and β_{x} simplified setting of ERL pass fail limits
 - Reduces the number of moving parts

DFE OPERATIONS ON AN Rx PULSE RESPONSE

- A DFE might interpret the response in red dots at the right as zero volts
- 21 DFE taps
- The DFE offers some protection against discontinuities in a package and BGA break out reflections
- Time gating and weighting accommodates this

ALL IS NOT GONE

- The magenta signal is a direct result of the signal highlighted in red in the previous slide
- There are still interactions the DFE will not remove
- So we only remove a portion of these reflections in the PTDR

REFLECTION GATING AND WEIGHING

From a previous slide

ERL really uses R_{eff}(t)

 $R_{eff}(t) = G_{loss}(t) G_{rr}(t) PTDR(t)$

- G_{loss}(t) G_{rr}(t) is a weighting gating function
- Now let's looks at a simple example

USAGE MODEL: GRAPHIC VIEW OF WEIGHTING GATING TIME FUNCTION

The Weighting Gating Time Function has 0 value before T_{fx} and 1 after $N_{bx}+T_{fx}$

samtec gEEk spEEk

SUMMARY

- ERL is scalar number representing return loss for
 - For a particular data rate, required BER, and signaling (NRZ, PAM4, PAM6 ...)
- ERL may account for package loss and a DFE
- ERL is computed from a pulse TDR (PTDR)
- PTDR looks like a derivative of TDR
- ERL is normatively specified for many standard with data rates above 50 Gb/s
- ERL may be used to tune design features
 - By adjusting timing parameters

For information about Samtec's gEEk[®] spEEk presentations, contact: gEEkspEEk@samtec.com

For Signal Integrity questions, contact: SIG@samtec.com

To view previous gEEk[®] spEEk webinar recordings, go to **www.samtec.com/geekspeek**

Backup Data

COM References

COM Matlab download

http://www.ieee802.org/3/ck/public/tools/tools/mellitz_3ck_adhoc_01a_09092 0_COM2p95.zip

• Early paper on COM

https://pdfs.semanticscholar.org/7e9c/b8b162fe93a131d37fa1408fb56d9e5b05 f8.pdf

ERL References

- "Effective Return Loss for 112G and 56G PAM 4"; R. Mellitz, Dr. E. P. Sayre DesignCon 2018; Santa Clara, Ca, USA
- "Practical Implementation of Testing 50-Gbps per Lane Effective Return Loss (ERL)", C. DiMinico, C. Donahue O.J. Danzy, R Mellitz, M Resso, M. Sapozhnikov, M. Klempa; DesignCon 2019, Santa Clara, Ca, USA

Example COM Configuration

Table 93A-1 parameters				I/O control			Table 93A–3 parameters		
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	0.006141	ns/mm
Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL_	KR_{date}	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
C_d	[1.2e-4 1.2e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical			
L_s	[0.12, 0.12]	nH	[TX RX]	Port Order	[1 3 2 4]			Table 92–12 parameters	\$
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	KR_eval_		Parameter	Setting	
z_p select	[12]		[test cases to run]	COM_CONTRIBUTION	v 0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]		Operational		board_tl_tau	5.790E-03	ns/mm
z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	100	Ohm
z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	ERL Pass threshold	8	dB	z_bp (TX)	110.3	mm
z_p (RX)	[12 29; 1.8 1.8]	mm	[test cases]	DER_0	0.0001		z_bp (NEXT)	110.3	mm
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	T_r	0.0075	ns	z_bp (FEXT)	110.3	mm
R_0	50	Ohm		FORCE_TR	1	logical	z_bp (RX)	110.3	mm
R_d	[50 50]	Ohm	[TX RX]	Local Search	2		C_0	[0.29e-4]	nF
A_v	0.413	V		BREAD_CRUMBS	1	logical	C_1	[0.19e-4]	nF
A_fe	0.413	V		SAVE_CONFIG2MAT	1	logical	Include PCB	0	logical
A_ne	0.608	V						Floating Tap Control	
L	4			TDF	and ERL options		N_bg	3	0 1 2 or 3 groups
м	32			TDR	1	logical	N_bf	3	taps per group
	filter and Eq			ERL	1	logical	N_f	40	UI span for floating taps
f_r	0.75	*fb		ERL_ONLY	0	logical	bmaxg	0.05	max DFE value for floating taps
c(0)	0.54		min	TR_TDR	0.01	ns	B_float_RSS_MAX	0.02	rss tail tap limit
c(-1)	[-0.34:0.02:0]		[min:step:max]	N	3500		N_tail_start	25	(UI) start of tail taps limit
c(-2)	[0:0.02:0.12]		[min:step:max]	beta_x	0			ICN parameters	
c(-3)	[-0.06:0.02:0]		[min:step:max]	rho_x	0.618		f_v	0.594	*Fb
c(1)	[-0.2:0.05:0]		[min:step:max]	fixture delay time	[00]	[port1 port2]	f_f	0.594	*Fb
N_b	12	UI		TDR_W_TXPKG	0		f_n	0.594	*Fb
b_max(1)	0.85			N_bx	21	UI	f_2	40.000	GHz
b_max(2N_b)	[0.3 0.2*ones(1,10)]			Tukey_Window	1	logical	A_ft	0.600	V
b_min(1)	0.3				Noise, jitter		A_nt	0.600	V
b_min(2N_b)	[0.05 -0.03*ones(1,10)]			sigma_RJ	0.01	UI			
g_DC	[-20:1:0]	dB	[min:step:max]	A_DD	0.02	UI	Receiver testing		
f_z	21.25	GHz		eta_0	8.20E-09	V^2/GHz	RX_CALIBRATION	0	logical
f_p1	21.25	GHz		SNR_TX	33	dB	Sigma BBN step	5.00E-03	V
f_p2	53.125	GHz		R_LM	0.95				
g_DC_HP	[-6:1:0]		[min:step:max]		config	com ie	ee8023 93a=	3ck d1n3 KF	109 01 2020
f_HP_PZ	0.6640625	GHz					220025_55a-		