

geek speek

Noise and Simulation Correlation | Richard Mellitz

INTRODUCTION

- Statistical terms and experiments
- Bit Stream, Measurement, and COM Correlation
- Adjust COM Parameters to System Error for Correlation
- Summary

What is Correlation?

- Takeaway: "Why" is the answer
- More later...
- First let's review some statistics

R square

- In statistics, "the coefficient of determination, denoted R² or r² and pronounced 'R square', is the proportion of the variance in the dependent variable that is predictable from the independent variable(s)¹"
- R² ranges between 0 and 1
- If the R² of a model is 0.50, then half of the observances can be attributed to model's inputs
- If the R² of a model is 1.0, then all of the observances can be attributed to model's inputs
- Now for the rest of the story

Simple Experiment

- X are the independent parameters variables
- Y are the dependent parameters or in our case simulated results

For this experiment, let's take a quadratic $y(x) = 0.05x^2 - 0.5x - 2.2 \ [x \{-10 \ to \ 10, step \ 0.05\}$

Plotting and Fitting *signal(x)* w/1mV RMS noise

-6 └--10

-5

0

Х

5

10

- R-square (R²) is like a correlation factor
 - R² is 0.9204 i.e. data is ~92% correlated to the fit
- □ **RMSE** is the Root Mean Square Error
 - One way to interpret is:
 - The equation is on average +/- 0.9818 accurate
- □ The goal is to find the original equation,
 - $y(x) = 0.05x^2 0.5x 2.2$ from the dots (samples) in the curve on the left
- The fit is an equation called f(x) at the left
 - With p1, p2, and p3 coefficients

Plotting and Fitting signal(x) w/0.1mV RMS noise

- This time R² is 99.89%
 - We can reproduce the equation well but there still is an uncertainty
 - This time RMSE is 0.1061 accurate
 - Often RMSE is more important than the correlation (R²)

An almost perfect fit does not have zero uncertainty

Let's Reduce the Noise by a Factor of 10

A Word of Caution: Choose Your Data Wisely

- This time our x samples are a normal distribution shifted by -2.
- If you didn't know better, you might think a linear fit is OK
 - R-square is 83.6% (previously ~92%)
 - RMSE is 1.418 (previously ~0.98)
- Correlation depends on what the end goal is
- Determining the end goal is often the most difficult task.

Speaking of End Goals ... The End Goal Here is to Predict Error Ratios

- Example: Compare simulation, measurements, and BER (bit error ratio)
- Then use noise to achieve correlation

For Reference background: 112 Gbps PAM-4 channel example at 53.126 Gbaud(Gb) ~ Channel IL plus packages IL ~= 20.45 dB loss at 26.6 GHz

Measurements Emulation and Simulation Signals at a Sampler

- The simulation was using a bit stream (not COM)
 - -PRBS19Q was used
 - -~10⁵ symbols
- The measurement emulates quantized noise from digital signal processing at a sampler
- Is this a good correlation?
- Subject for a good discussion... ?

Coefficient of Determination (R²) Seems Good

- R² is great ... 99.74%
- RMSE is 1.163 mV
- Keep this RMSE in mind

 In essence this is the noise(RMS) seen at the sampler

Two Eye Diagrams: Simulation and Measurement Emulation

Simulation Signal at Sampler Larger eye opening

Measurement EMULATION Signal at Sampler BER higher than Simulation

First step: Look at the histograms i.e. probability distributions functions (PDF)

Simulation Signal at Sampler

Measurement EMULATION Signal at Sampler

Now Let's Do the Simulation Using COM

- COM Voltage Bathtub Curves and simulation bathtub curves should be approximately the same
- This is a cumulative distribution function (CDF) curve
 - For worst symbol eye
- Not a probability density function (PDF)
- We need to covert the prior histogram to a CDF to do comparisons

Voltage Bathtub Curves in COM and Bitstream Simulation

Let's focus in the left pdf for the middle eye

COM Agrees with Bit Stream Simulation

- The red and blue curves were created with a "cumsum" function of the PDF's on the prior slide
- The Measurement Emulation (blue) has about 7 mv less eye opening.

\circ 3.5 mv mean to peak

 Goal: Adjust COM to agree with the measurement emulation?

samtec gEEk[®] spEEk

COM noise and related parameters definition

Config keyword	Units	Comments		
sigma_RJ	UI	Random Jitter (RMS)		
A_DD	UI	Normalized peak dual-Dirac noise, this is half of the total bound uncorrelated jitter (BUJ) in UI		
eta_0	v^2/GHz	One-sided noise spectral density		
SNR_TX	dB	transmitter SNR noise (RMS)		
R_LM	Unitless	Ratio of level separation mismatch. Relevant for PAM-4 only.		
DER_0	errors per symbol detection	Target detector error ratio		

samlec gEEk[®] spEEk

COM parameter used for this experiment

Config keyword	Value	Units	Comments
sigma_RJ	0.0001	UI	
A_DD	0.0002	UI	no jitter f
eta_0	8.2E-011	v^2/GHz	No Rx noise
SNR_TX	100	dB	No Tx noise
R_LM	1	Unitless	No level mismatch
DER_0	0.0001	errors per symbol detection	Target detector error ratio

Eta O (η_0) One-sided noise spectral density

- In the correlation experiment we showed an RMSE of ~ 1.163 mV In essence this is the noise (RMS) seen the sampler
 - which is **not** in the simulation
 - **but is** in the measurement emulation
- In the COM computation there is a similar term, s_n, used as input referred noise

$$\sigma_n^2 = \eta_0 \int_0^\infty \left| H_r(f) H_{ctf}(f) \right|^2 df$$

Where $H_r(f)$ is the receiver bandwidth and $H_{ctf}(f)$ is the voltage transfer response of the continuous time filter (aka CTLE).

 $-H_r(f)$ is specified by COM and $H_{ctf}(f)$ is determined during COM optimization

If we assume the RMSE is, σ_n , we can determine η_0 (eta_0)

All other parameters are known

For our case we found η_0 is approximately 8.20E-08 V²/GHz

The next step is run COM with this new η_0

- The COM simulation with new η₀ (eta_0) produces approximately the same bathtub curve as the measurement emulation
 - Remember we derived the new η_0 from the RMSE of the correlation at the sampler

Let's Look at this Another Way

- COM reports and approximate DER at failure
 - Assuming COM exceeding the limit produces an error.

DOCTORNO CONT

COM r2.94 results	—		\times						
: Case 1: z_p=(31:1.8, 29:1.8, 29:1.8, 31:1.8) (TX, RX, NEXT, FEXT): : COM = 6.903 dB (pass) : DER = 7.429e-11 at COM threshold									
OK									

Sample of COM report

--- Testcase 1 results ---

fitted_IL_dB_at_Fnq: 10.8098 VEO_normalized: 0.5483 VEC_dB: 5.2200 VEO_mV: 13.1813 EW_UI_est: 0.2188 COM_dB: 6.9026 DER_thresh: 7.4295e-11 rtmin: 1.1884

PASS ... COM = 6.903 dB

DER = 7.429e-11 at COM threshold

Let's Say We Can Determine the BER of an Actual Running System

Example of Correlating COM to the Reported System BER

- Determine the detector error ratio from measured BER
- Adjust the COM parameter eta_0 until the measured DER approximates the reported DER at COM threshold

- Just like we did for the waveform correlation

 Now we have a COM model which is somewhat correlated to measurements

Summary

- Statistics can be misleading
 - Scrutinize data selection
- Waveform correlation is only a first step
- Make sure you know the "end goal"
- Use of noise is a good tool for achieving model correlation to reported system errors

For information about Samtec's gEEk® spEEk presentations, contact: gEEkspEEk@samtec.com

For Signal Integrity questions, contact: SIG@samtec.com

To view previous gEEk[®] spEEk webinar recordings, go to **www.samtec.com/geekspeek**

Footnoted References

 See Wikipedia ,' Coefficient of determination', <u>https://en.wikipedia.org/wiki/Coefficient of determination</u>, as of 4 August 2020, at 14:30 (UTC)

COM References

COM Matlab download

http://www.ieee802.org/3/ck/public/tools/tools/mellitz_3ck_adhoc_01_052020 COM2p93.zip

• Early paper on COM

https://pdfs.semanticscholar.org/7e9c/b8b162fe93a131d37fa1408fb56d9e5b05 f8.pdf

More Reference's 1

"Receiver testing for PHYs based on 10GBASE-KR", A. Healey, R. Mellitz, J. D'Ambrosia, IEEE P802.3ba Task Force Meeting, Dallas, TX November 2008 <u>http://www.ieee802.org/3/ba/public/nov08/healey_01_1108.pdf</u>

"Noise considerations for 40/100GBASE-CR4/10", A. Healey, IEEE P802.3ba Task Force Meeting, San Francisco, CA, July 2009 http://www.ieee802.org/3/ba/public/jul09/healey 02 0709.pdf

"Noise considerations for 40/100GBASE-CR4/10", A. Healey, IEEE P802.3ba Task Force Meeting, San Francisco, CA, July 2009

http://www.ieee802.org/3/ba/public/jul09/healey_02_0709.pdf

"Analysis of contributed channels using the COM method", A. Ran, R. Mellitz, IEEE 802.3bj Task Force Meeting, San Diego, CA July 2012

http://www.ieee802.org/3/bj/public/jul12/ran_01a_0712.pdf

More Reference's 2

"Time-Domain Channel Specification: Proposal for Backplane Channel Characteristic Sections" IEEE 802.3bj Task Force", R. Mellitz, C. Moore, M. Dudek, M. Li, A. Ran,, IEEE 802.3bj Task Force Meeting, San Diego, CA July 2012 <u>http://www.ieee802.org/3/bj/public/jul12/mellitz_01_0712.pdf</u>

L. Ben-Artsi, R. Mellitz, "PKG and Interconnect COM Impact Analysis and What-ifs", IEEE 802.3bj Task Force Meeting, San Antonio, TX Nov 2012 <u>http://ieee802.org/3/bj/public/nov12/benartsi_3bj_01a_1112.pdf</u>

"S-Parameter to Single Bit Response (SBR) Transformation and Convergence Study", M. Li, H. Wu, M. Shimanouchi, IEEE 802.3bj Task Force Meeting, Minneapolis, MN, May 2012 http://ieee802.org/3/bj/public/may12/li 01 0512.pdf

"Optimum Frequency Sampling in S-Parameter Extraction and Simulation" J. Huang, Asian IBIS Summit, Shanghai, China, Nov. 11, 2008

http://www.eda.org/ibis/summits/nov08a/huang.pdf