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Why should we care for ESR?

• RF/MW: dissipative losses, unloaded Q of circuit

• PI: PDN impedance, ripple dissipation

• SI: loss in DC blocking applications

Effective Series Resistance (ESR)

Ideal capacitor
No parasitics

Real capacitor
ESR and ESL parasitics



A simple equivalent circuit of a capacitor including its 
resistance and inductance 

The Impedance of Capacitors

Impedance magnitude of a capacitor [Ohm] 
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A simple equivalent circuit of a 

22uF electrolytic capacitor 

with frequency-independent 

resistance and inductance 

How Accurate Is the C-R-L Model?

MODEL PARAMETERS:
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How Accurate Is the C-R-L Model?
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The frequency-independent ESR is fairly accurate (for this 
part, in this frequency range)



How Accurate Is the C-R-L Model?

The frequency-independent ESR is a fairly bad fit for a 100uF MLCC part

MODEL PARAMETERS:
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• Conductor loss (R1): terminals, capacitor plates

• Dielectric loss (G1): dielectric loss tangent of insulating 
material, surface leakage

Effective Series Resistance: Its Sources

Source
https://go.kemet.com/en-us/en-
us/06-2020-webinar-mlcc-and-film-
construction-characteristics

Source
https://en.wikipedia.org/wiki/Aluminum_elect
rolytic_capacitor#/media/File:Al-e-cap-
winding-multi-tabs.jpg



What Makes ESR Frequency Dependent?
Multiple reasons:
• G1 is frequency dependent

• For a given Df(f) dielectric loss tangent G1 is
• R1 is frequency dependent due to current redistribution
• G1 and R1 are mixed through opposite-sign reactance
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The Combination of Series and Parallel Losses
The conversion:
• Step 1: Convert the parallel R-C to a series R-C 

network
• Step 2: Add the series R-L network related to 

conductive losses
• Converting parallel to serial circuit mixes the 

real and imaginary parts

Yp(f)=Gp(f)+j2f C(f)

Zs(f)=Rps(f)+j2f C(f)
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the loss tangent 



The Combined Series and Parallel Losses

Impedance magnitude of a capacitor [Ohm] 
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Some Measured ESR Examples

560uF OSCON capacitor

300Hz 30MHz

5.1mOhm

Frequency

300Hz 30MHzFrequency

47uF ceramic capacitor

1.7mOhm



• MLCC: we get typical ESR values at best

• Tantalum, electrolytic capacitors: at best we get the maximum 
ESR values

• Exception: controlled-ESR capacitors

• Don’t forget some additional conditions: aging, thermal shock, 
etc

ESR: What is Guaranteed by Spec?

See more in: “History of Controlled-ESR Capacitors at SUN,” DesignCon 2007



An example with three banks of PDN parts, nominally 
producing flat 5mOhm lumped impedance

ESR Uncertainty: Why Should We Care?
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WC 
transient 
noise: 5 
mVpp/A

5mOhm 0.6nH

20uF 5mOhm 0.025nH

1uF 5mOhm 0.005nH

See examples in: “Electrical and Thermal Consequences of Non-flat Impedance Profiles,” DesignCon 2016
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Assume 1/3x…3x ESR variation and +-20% C and L variations

ESR Uncertainty: Worst Case

WC transient 
noise: 19 
mVpp/A

1.7mOhm 0.72nH

16uF 1.7mOhm 0.03nH

0.8uF 1.7mOhm 0.005nH



What Frequency Range Should We Care?

Impedance magnitude of a capacitor [Ohm] 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Frequency [Hz]

SRF

ESR

Capacitive Inductive

Usually, the vicinity of SRF matters
At much lower and higher frequencies other PDN components will dominate
Note: some simulators may use truncated values



ESR and DC Bias in Class II MLCC
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• ESR does not change above SRF

• ESR increases below SRF as C drops

• Piezo effect shows up with increasing bias

Piezo effect



Secondary Effects: 2D Models

Two-dimensional bedspring model



Secondary Effects: 2D Models

Plate current at high frequency [A] Dielectric current at high frequency [A]
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Internal current flow of MLCC at high frequencies captured with the 
2D bedspring model.
Note: the horizontal and vertical resonances



Secondary Effects: 3D Models

Source: “Designing DC-Blocking Capacitor Transitions to Enable 56Gbps NRZ & 112Gbps PAM4,” DesignCon 2018

Simulates the internal geometry of the capacitor together with its immediate vicinity
Produces S-parameter data



Summary and Conclusions

• Capacitor ESR represents the combined conductive and 
dielectric losses

• The frequency dependency is a complex function of material 
and geometry

• High-density ceramic capacitors can exhibit secondary 
resonances and piezo effect

• ESR variation drives up PDN worst-case transient noise

• Secondary effects can be simulated by 2D and 3D models
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