

Component Crosstalk Characterization by ICN

Presenter: Steve Krooswyk

INTRODUCTION

- We characterize components so that we may compare performances, improve designs, make product selections, and more...
- Almost always, this is done by Frequency Domain.
- However, interpretation has many traps.
 Let us consider crosstalk, where we may ask...
 - Is the value at Nyquist most important?
 - When is the ground mode resonance too large?
 - Is it OK to go slightly above -40dB?
 - If NEXT is most critical, does FEXT even matter?
- We will propose a holistic approach to component crosstalk evaluation, for use by the individual or standards groups.

Mini Case Study: Assumption

- **Component:** Edge Card connector model with especially high resonance as an interesting study case not a model of actual Samtec product.
- Test data rate is 32 Gbps
- Desire to compare two different PCB styles
 - Option 1: Baseline
 - Option 2: Add vias to ground pads

Mini Case Study: Connector Response

Option 1 improves low frequency NEXT, but is worse above 12GHz. Which is better?

Option 2 has higher FEXT, but resonance occurs at higher frequency (albeit much wider). Which is better?

Integrated Crosstalk Noise

- Applied to channel and cable specifications and single component analysis in various papers
- Many uses trade loss with permitted crosstalk

IEEE 802.3bj; USB; PCIe External Cable; SAS-4

$$\sigma_{ICN} = \sqrt{2 \cdot \Delta f \cdot \sum_{f_{min}}^{f_{max}} \frac{A^2}{f_b} \cdot PWF(f) \cdot 10^{\left(\frac{PwrSumXt}{10}\right)}}$$

$$PWF(f) = UI \cdot sinc(UI \cdot f)^{2} \cdot \left(\frac{1}{1 + \left(f \frac{T_{r}}{0.2365}\right)^{4}}\right) \cdot \left(\frac{1}{1 + \left(\frac{f}{F_{RX}}\right)^{8}}\right)$$

- Operation on crosstalk power sum
- Filter by spectral density and receiver filter
- Integration of remaining energy
- Adds irrespective of phase a power noise

ICN for Components: The Problem & Solution

- Little to no loss contained within small components
 - Packages, connectors, PCB vias and breakouts
- If ICN is calculated on component, higher frequencies are integrated that were otherwise attenuated by the channel

Through a lossy channel, this connector crosstalk is near -70dB

ICN for Components: The Problem & Solution

- Include system loss into ICN calculation
- Cascade channel is ideal but burdensome
- A scalable loss term is flexible, calling component contribution ICN (ccICN)
- Monotonic loss slope
- Customize for channel application
- Different for NEXT, FEXT

$$10^{\left(\frac{-2*k_{xa}*\frac{f}{f_b}}{10}\right)}$$

A Method for Calculating Component-Level Crosstalk Contributions to Channel Crosstalk (Kao, Rothemel, Stephens), DesignCon 2018

$$\sigma_{ICN} = \sqrt{2 \cdot \Delta f \cdot \sum_{f_{min}}^{f_{max}} \frac{A^2}{f_b} \cdot PWF(f) \cdot 10^{\left(\frac{PwrSumXt}{10}\right)} \cdot \underbrace{10^{\left(\frac{-2*Kxa*\frac{f}{f_b}}{10}\right)}}_{\text{Kxa term defines desired insertion loss at fb/2}}$$

Compare Transmission line to ccICN loss term: Same Loss at fb/2

ICN w\ Loss is a Position-Sensitive Metric

$$\sigma_{Fext} = \sqrt{2 \cdot \Delta f \cdot \sum_{f_{min}}^{f_{max}} \frac{Af^2}{f_b} \cdot PWF(f) \cdot 10^{\left(\frac{FextPwrSum}{10}\right)} \cdot 10^{\left(\frac{-2*kxa_fext*\frac{f}{f_b}}{10}\right)}}$$

$$\sigma_{Next} = \sqrt{2 \cdot \Delta f \cdot \sum_{f_{min}}^{f_{max}} \frac{An^2}{f_b} \cdot PWF(f) \cdot 10^{\left(\frac{NextPwrSum}{10}\right)} \cdot 10^{\left(\frac{-2*kxa_next*\frac{f}{f_b}}{10}\right)}}$$

Separate ICN FEXT and NEXT may be Root-Sum-Square together as a Total ICN:

$$\sigma_{Total} = \sqrt{\sigma_{Fext}^2 + \sigma_{Next}^2}$$

Does position matter? **Absolutely**

The input for ccICN is the loss experienced by the coupling-path and is position dependent.

NEXT: loss changes with channel position. **FEXT:** loss does not

change with position.

ICN w\ Loss is a Position-Sensitive Metric

NEXT Signal Path: Variable

Swept Connector Position 20, 40, 60, 80% of length

Channel Position	Kxa_next	ICN Next	Kxa_fext	ICN Fext	Eye Height
20%	21.2 dB	0.092 mV	24 dB	0.099 mV	33.56 mV
40%	18.4 dB	0.131 mV	24 dB	0.099 mV	32.04 mV
60%	15.6 dB	0.202 mV	24 dB	0.099 mV	31.60 mV
80%	12.8 dB	0.339 mV	24 dB	0.099 mV	30.15 mV

FEXT path is constant, and low crosstalk compared to NEXT.

Nearest Receiver = Lowest loss NEXT path = largest ICN value = Smallest Eye Height

ICN Components

$$\sigma_{ICN} = \sqrt{2 \cdot \Delta f \cdot \sum_{f_{min}}^{f_{max}} \frac{A^2}{f_b} \cdot PWF(f)} \cdot 10^{\left(\frac{PwrSumXt}{10}\right)} \cdot 10^{\left(\frac{-2*Kxa*\frac{f}{f_b}}{10}\right)}$$

ICN Components

Correlation, and Other Data Rates

32G Eye Height by ICN: Connector Models

Original ICN R-square 84.2 ccICN R-square 92.2

112G, 56G, COM by ICN: Connector Models

DesignCon 2019: Don't Judge a Bit Just by Its Fourier: 112 Gbps PAM4
Component Optimization and Selection
Steve Krooswyk, Madhumitha Rengarajan

Correlation, and Other Data Rates: 64G-PAM4

While -60dB is popular goal, evidence is some exceptions are okay

Performance correlated to ccICN

Mini Case Study: Conclusion

SUMMARY

- Component characterization with ICN provides a tool to better select or improve components
- Full link channel simulation is not necessary to evaluate comparisons
- Clarity for fuzzy differences between performances, where most important frequencies matter the most
- Inclusion of loss (ccICN) improves system prediction, and makes a viable tool for industry standards

For information about Samtec's gEEk® spEEk presentations, contact: gEEkspEEk@samtec.com

For Signal Integrity questions, contact: **SIG@samtec.com**

To view previous gEEk® spEEk webinar recordings, go to www.samtec.com/geekspeek